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The parametric instability characteristics of doubly curved panels subjected to various
in-plane static and periodic compressive edge loadings, including partial and concentrated
edge loadings are studied using "nite element analysis. The "rst order shear deformation
theory is used to model the doubly curved panels, considering the e!ects of transverse shear
deformation and rotary inertia. The theory used is the extension of dynamic, shear
deformable theory according to the Sander's "rst approximation for doubly curved shells,
which can be reduced to Love's and Donnell's theories by means of tracers. The e!ects of
static load factor, aspect ratio, radius-to-thickness ratio, shallowness ratio, boundary
conditions and the load parameters on the principal instability regions of doubly curved
panels are studied in detail using Bolotin's method. Quantitative results are presented to
show the e!ects of shell geometry and load parameters on the stability boundaries. Results
for plates and cylindrical shells are also presented as special cases and are compared with
those available in the literature.
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1. INTRODUCTION

Structural elements subjected to in-plane periodic forces may lead to parametric resonance,
due to certain combinations of the values of load parameters. The instability may occur
below the critical load of the structure under compressive loads over a range or ranges of
excitation frequencies. Several means of combating resonance such as damping and
vibration isolation may be inadequate and sometimes dangerous with reverse results [1].
Thus, the parametric resonance characteristics are of great technical importance for
understanding the dynamic systems under periodic loads. The parametric instability
characteristics of plates subjected to uniform loads were studied by Hutt and Salam [2]
using "nite element method. Parametric resonance in shell structures under periodic loads
had been of considerable interest since the subject was studied by Bolotin [3], Yao [4],
Bieniek et al. [5] and Vijayaraghavan and Evan-Iwanowski [6]. The method of solution of
these class of problems were to "rst reduce the equations of motion to a system of
Mathieu}Hill equations and the parametric resonance characteristics were studied by
di!erent methods. A detailed study of resonances had carried out by Koval [7] using
Donnel's shell theory. The stability of the steady state response of simply supported circular
cylinders subjected to harmonic excitation was investigated by Radwin and Genin [8] using
variational equations. The parametric instability characteristics of circular cylindrical shells
under static and periodic loading were studied by Nagai and Yamaki [9] using Galerkin
procedure and Hsu's method. The dynamic stability and non-linear parametric vibration of
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118 S. K. SAHU AND P. K. DATTA
isotropic cylindrical shells with added mass were considered by Kovtunov [10]. The
dynamic instability of composite simply supported circular cylindrical shell was analysed by
the method of multiple scale (MMS) by Cederbaum [11]. A perturbation technique was
employed by Argento and Scott [12] to study the instability regions subjected to axial
loading. The e!ects of static load and static snap through buckling on the instability for
spherical and conical shells were investigated [13] using Galerkin method. The dynamic
instability of conical shells were studied by Tani [14] using "nite di!erence method and by
Ng et al. [15] using generalized di!erential quadrature method. The parametric resonance
of a rotating cylindrical shell subjected to periodic axial loads was investigated by Ng et al.
[16]. The parametric resonance of cylindrical shells under combined static and periodic
loading was studied using di!erent thin shell theories by Lam and Ng [17, 18]. Most of the
investigators studied the dynamic stability of uniformly loaded closed cylindrical shells with
a simply supported boundary condition, using analytical approach.

The practical importance of stability analysis of doubly curved panels/open shells has
been increased in structural, aerospace (skin panels in wings, fuselage, etc.), submarine hulls
and mechanical applications but this type of open shells/panels have received less attention
because of complexities involved. The free vibration of doubly curved shallow shells/curved
panels was studied by a number of researchers [19}22] and well reviewed [23, 24]. Recently,
the vibration under uniform initial stress and buckling stresses were studied for thick simply
supported doubly curved open shells/panels through Hamilton's principle [25]. The
buckling characteristics of isotropic #at panel [26, 27] and closed cylindrical shell [28, 29]
due to concentrated loadings were also investigated. The study of the parametric instability
behaviour of curved panels is new. Recently, the dynamic stability of uniformly loaded
cylindrical panels with transverse shear e!ects is studied by Ng et al. [30]. Besides this, the
applied load is seldom uniform and the boundary condition may be completely arbitrary in
practice. The application of non-uniform loading and general boundary conditions on the
structural component will alter the global quantities such as free vibration frequency,
buckling load and dynamic instability region (DIR).

In the present study, the parametric instability of doubly curved panels subjected to
various in-plane uniform and non-uniform, including partial and concentrated edge
loadings are investigated. The in#uences of various parameters like e!ects of static and
dynamic load factors, aspect ratio, radius-to-side ratio, thickness, various boundary
conditions, percentage of loaded length and position of concentrated loads on the
instability behaviour of curved panels have been examined. The present formulation of the
problem is made general to accommodate a doubly curved panel with "nite curvatures in
both the directions having arbitrary load and boundary conditions.

2. THEORY AND FORMULATIONS

The basic con"guration of the problem considered here is a doubly curved panel as
shown in Figure 1, subjected to various non-uniform harmonic in-plane edge loadings.

2.1. GOVERNING EQUATIONS

The equation of equilibrium for free vibration of a shear deformable doubly curved panel
subjected to in-plane external loading can be written as
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Figure 1. Geometry and co-ordinate systems of a doubly curved panel.
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where N0
1

and N0
2

are the external loading in X and > directions respectively. C
1

and
C

2
are tracers by which the analysis can be reduced to that of Sander's, Love's and

Donnell's theories. The equation of motion can be written in matrix form as

[M] MqK N#[[K
e
]!P[K

g
]]MqN"0. (2)

The in-plane load P (t) is periodic and can be expressed in the form

P (t)"P
s
#P

t
cosXt, (3)

where P
s
is the static portion of P. P

t
is the amplitude of the dynamic portion of P and X is

the frequency of excitation. The static buckling load of elastic shell P
cr

is the measure of the
magnitudes of P

s
and P

t
,

P
s
"aP

cr
, P

t
"bP

cr
(4)

where a and b are termed as static and dynamic load factors respectively. Using equation
(3), the equation of motion is obtained as
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[K

g
] cosXt]MqN"0. (5)
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120 S. K. SAHU AND P. K. DATTA
Equation (5) represents a system of second order di!erential equations with periodic
coe$cients of the Mathieu}Hill type. The development of regions of instability arises
from Floquet's theory which establishes the existence of periodic solutions. The boundaries
of the dynamic instability regions are formed by the periodic solutions of period ¹ and 2¹,
where ¹"2n/X. The boundaries of the primary instability regions with period 2¹ are of
practical importance [3] and the solution can be achieved in the form of the trigonometric
series

q(t)"
=
+

k/1,3,5
CMakN sin

kht

2
#Mb

k
N cos

kht

2 D. (6)

Substituting into equation (5) and if only the "rst term of the series is considered, equating
coe$cients of sin ht/2 and cos ht/2 the equation becomes
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[M]D MqN"0. (7)

Equation (7) represents an eigenvalue problem for known values of a,b and P
cr
. The two

conditions under a plus and minus sign correspond to two boundaries of the dynamic
instability region. The eigenvalues are X, which give the boundary frequencies of the
instability regions for given values of a and b. In this analysis, the computed static buckling
load of the panel is considered as the reference load in line with Moorthy et al. [31] and
Ganapathi et al. [32].

An eight-noded curved isoparametric quadratic element is employed in the present
analysis with "ve degrees of freedom u, v, w, h

x
and h

y
per node. First order shear

deformation theory (FSDT) is used and the shear correction coe$cient has been employed
to account for the non-linear distribution of the shear strains through the thickness. The
displacement "eld assumes that mid-plane normal remains straight but not necessarily
normal after deformation, so that

uN (x, y, z)"u(x, y)#zh
x
(x, y),

vN (x, y, z)"v(x, y)#zh
y
(x, y), (8)

wN (x, y, z)"w(x, y),

where h
x
, h

y
are the rotations of the mid-surface.

Also, uN , vN , wN and u, v, w are the displacement components in the x, y, z directions at any
section and at mid-surface respectively. The constitutive relationships for the shell are given
by

F"[D]MeN, (9)
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A Reissner's shear correction factor of 5/6 is included for all numerical computations.
Extension of shear deformable Sander's kinematic relations for doubly curved shells
[33, 34] are used in the analysis. The linear strain}displacement relations are
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The element geometric sti!ness matrix for the doubly curved panel is derived using the
non-linear strain components as
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The element matrices are derived as:

Elastic sti+ness matrix:

[K
e
]
e
"P [B]T[D][B] dxdy. (15)

Geometric sti+ness matrix:

[K
g
]
e
"P [B

g
]T[p6 ][B

g
] dxdy. (16)

Consistent mass matrix:

[M]
e
"P [N]T[I][N] dxdy. (17)

The overall matrices [K
e
], [K

g
] and [M] are obtained by assembling the corresponding

element matrices.

2.2. COMPUTER PROGRAM

A computer program has been developed to perform all the necessary computations.
Element elastic sti!ness matrices and mass matrices are obtained using a standard
procedure. The geometric sti!ness matrix is essentially a function of the in-plane stress
distribution in the element due to applied edge loadings. Since the stress "eld is non-
uniform, plane stress analysis is carried out using the "nite element method to determine the
stresses and these are used to formulate the geometric sti!ness matrix. Reduced integration
technique is adopted in order to avoid possible shear locking. Element matrices are
assembled into global matrices, using skyline technique. Subspace iteration method is
adopted throughout to solve the eigenvalue problems.

3. RESULTS AND DISCUSSIONS

The convergence studies have been carried out for fundamental frequencies of vibration
of cantilevered doubly curved shells/panels for three di!erent cases and the results are
compared with Leissa et al. [20] in Table 1. From the above convergence study, 10]10
mesh has been employed to idealize the panel in the subsequent analysis. The idealization is
chosen in order to apply compression to a small fraction of the edge length and also for
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TABLE 1

Convergence of non-dimensional fundamental frequencies without in-plane load of doubly
curved shells/panels (a/b"1, b/h"100, b/R

y
"0)2, l"0)3. Non-dimensional

frequency, u"uN a2J(oh/D))

Non-dimensional frequencies of shells
Mesh

division Cylindrical Spherical Hyperbolic paraboloid

4]4 8)3837 6)6529 6)6072
8]8 8)3679 6)5787 6)5015

10]10 8)3653 6)5748 6)4969
Leissa [20] (8)3683) (6)5854) (6)5038)

TABLE 2

Non-dimensional fundamental frequencies and buckling loads for the doubly curved
shell/panel (a/b"1, l"0)3. Non-dimensional frequency, u"uN hJ(o/G), j"N

x
b2/D)

Non-dimensional frequencies Non-dimensional bucklingloads

a/h a/R
x

b/R
y

Present FEM Matsunaga [25] Present FEM Matsunaga [25]

10 0 0 0)09303 0)09315 36)8284 36)9242
0)2 0)2 0)09822 0)09826 41)0487 41)0872
0 0)2 0)09426 0)09436 37)8075 37)8904

!0)2 0)2 0)09264 0)09276 36)5235 36)6162
20 0 0 0)02386 0)02387 38)7757 38)7945

0)2 0)2 0)02873 0)02872 56)2143 56)1620
0 0)2 0)02515 0)02515 43)0581 43)0670

!0)2 0)2 0)02373 0)02378 38)4618 38)5033
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convergence criterion. To validate the formulation further, the free vibration frequency and
critical buckling load for simply supported uniformly loaded shells/panels, are compared
with the literature [25] in Table 2. The above studies indicate good agreement between the
present study and those from the literature. Once the free vibration and buckling results are
validated, the dynamic instability studies are made.

3.1. PARAMETRIC INSTABILITY STUDIES

The parametric instability regions are plotted for a uniaxially loaded doubly curved panel
with/without static component to consider the e!ects of static load factor, aspect ratio,
boundary conditions, radius-to-thickness ratio, shallowness ratio, load bandwidth and
positions of concentrated edge loading. A simply supported doubly curved panel of
dimensions a"b"400 mm, h"4 mm, E"0)7e11 N/m2, l"0)3, o"2800 kg/m3,
R

x
"R

y
"2000 mm is described as a standard case and the computed buckling load of this

panel is taken as the reference load in line with Moorthy et al. [31]. The non-dimensional

excitation frequency X"XM a2Joh/D is used throughout the dynamic instability studies
(unless otherwise mentioned), where XM is the excitation frequency in rad/s,
JSVI=20003187=Ravi=VVC



Figure 2. E!ect of static load factor on instability region of a fully loaded curved panel: a/b"1, a/R
x
"0)2,

b/R
y
"0)2, for a"0)0, 0)2, 0)4, 0)8. Static load factor (a): d"0, j"0)2, ."0)4, h"0)6.

Figure 3. E!ect of aspect ratio on instability region of the curved panel for a/b"1, 2 and 3, a/R
x
"0,

b/R
y
"0)2, a"0)2. Aspect ratio: d"1, j"2, ."3.
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D"Eh3/12(1!l2). The e!ect of static component of load for a"0)0, 0)2, 0)4 and 0)6 on the
instability regions is shown in Figure 2. Due to increase of static component, the instability
regions tend to shift to lower frequencies and become wider. Figure 3 shows the e!ect of
aspect ratio on instability regions. It is observed that the onset of dynamic stability occurs
much later with decrease of the aspect ratio but with increasing width of instability regions.
Figure 4 shows the in#uence of di!erent boundaries (SSSS, SCSC, CCCC) on the principal
instability regions. As expected, the instability occurs at a higher excitation frequency from
simply supported to clamped edges due to the restraint at the edges. The width of the
instability regions are also decreased with the increase of restraint at the edges. The e!ect of
radius-to-thickness ratio on instability regions is shown in Figure 5. The onset of dynamic
instability regions are observed to be increasing with decrease of R

y
/h ratio. Figure 6 shows

the e!ect of shallowness ratio on instability regions. As seen from the "gure, the instability
excitation frequency is higher for decrease of shallowness by decreasing R

x
and R

y
. Studies

have also been made (Figure 7) for comparison of instability regions for di!erent shell
JSVI=20003187=Ravi=VVC



Figure 4. E!ect of boundary conditions (SSSS, SCSC, CCCC) on instability region of the curved panel for
a/b"1, a/R

x
"0)0, b/R

y
"0)2 and a"0)2. Boundary: d"SSSS, j"SCSC, ."CCCC.

Figure 5. E!ect of thickness on instability region of the curved panel for a/b"1, R
x
/h"R

y
/h"625, 500, 375

and a"0)2. R/h ratio: d"625, j"500, ."375.

Figure 6. E!ect of R
y
/b on instability region of the curved panel for a/b"1, R

x
/a"R

y
/b"3, 5, 10, a"0)2.

Rx/a"Ry/b: d"3, j"5, ."10.
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Figure 7. E!ect of curvature on instability region of di!erent curved panels for a/b"1, #at panel
(a/R

x
"b/R

y
"0), cylindrical (a/R

x
"0, b/R

y
"0)2), spherical (a/R

x
"b/R

y
"0)2), hyperbolic paraboloid

(a/R
x
"!0)2, b/R

y
"0)2) and a"0)0. Curved panel: d"plate, j"cylindrical, ."spherical, h"hyperbolic

parabolid.

TABLE 3

Primary regions of instability for the doubly curved panel subjected to di+erent loading
conditions (a"b"400 mm, h"4 mm, E"0)7e11 N/m2, l"0)3, o"2800 kg/m3,

R
x
"R

y
"2000 mm, a"0)2. Non-dimensional frequency, X"XM a2Joh/D)

Uniaxial loading Biaxial loading

b ; ¸ ; ¸

0 133)0780 133)0780 128)3204 128)3204
0)2 135)3942 130)7208 133)0780 123)3793
0)4 137)6714 128)3203 137)6714 118)2320
0)6 139)9115 121)0582 142)1164 107)3603
0)8 142)1164 110)2660 146)4265 91)6730

126 S. K. SAHU AND P. K. DATTA
geometries. It is observed that the excitation frequency increases with introduction of
curvatures from plate to doubly curved panel. However, the hyperbolic paraboloid shows
similar instability behaviour as that of a #at panel with no sti!ness being added due to the
curvature of the panel. Similar observations were also obtained by Leissa and Kadi [19] on
a study of vibration of shells. The study is then extended for biaxial loading on
the parametric excitation behaviour of doubly curved panels. The results are presented in
Table 3. It was observed that instability appears at lower excitation frequency with
increasing dynamic instability region. The investigation is then extended for partial and
concentrated edge loading from one end. The load parameter of c/b"0 corresponds to
concentrated loads at the two opposite edges. A double pair of partial and concentrated
loading from both ends and other types of non-uniform loading are also studied. The
curved panels under non-uniform loading behave di!erently to that of under uniform
loading. The onset of dynamic stability occurs earlier with the increase of percentage of
loaded edge length. Figure 8 shows that the instability occurs later for a small patch loading
(c/b"0)2) as compared to a higher bandwidth (c/b"0)8). This may be due to the constraint
at the edges. Similarly, the instability also depends on the positions of concentrated loading
JSVI=20003187=Ravi=VVC



Figure 8. E!ect of percentage of loaded edge length on instability region of a spherical panel for a/b"1,
a/R

x
"b/R

y
"0)2, c/b"0)2 and 0)8, a"0)2. z of loading (c/b): d"0)2, j"0)8.

Figure 9. E!ect of position of concentrated load on instability region of a spherical shell for a/b"1,
a/R

x
"b/R

y
"0)2, c/b"0, 0)25 and 0)5, a"0)2. Load position (c/b): d"0, j"0)25, ."0)5.
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(Figure 9). As observed, the instability occurs at lower excitation frequencies with increase
of distance from the edges (c/b). The curved panel with a small patch of loading behaves in
a similar manner to that of a panel subjected to a pair of concentrated loading near the
edges and shows highest sti!ness among all the loadings considered.

4. CONCLUSION

The results of the stability studies of the shells can be summarized as follows:

1. Due to static component, the instability regions tend to shift to lower frequencies with
wide instability regions showing destabilizing e!ect on the dynamic stability
behaviour of the curved panel.

2. The onset of instability occurs at higher excitation frequencies with lower R
y
/h ratios.

3. The instability regions have been in#uenced due to restraint provided at the edges.
4. The onset of instability region appears earlier for rectangular panels with the increase

in aspect ratio.
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128 S. K. SAHU AND P. K. DATTA
5. The instability regions start at higher frequencies with lower shallowness ratio.
6. The curved panels show more sti!ness with addition of curvatures. But the hyperbolic

paraboloid panels behave like a plate with no sti!ness being added due to curvature of
the shell.

7. The instability appears at lower excitation frequency with increasing dynamic
instability region with biaxial loading.

8. The onset of instability occurs at higher excitation frequencies for small patch and
concentrated loads near the edges but at lower frequencies for long bandwidth and
concentrated loads away from the edges.
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APPENDIX A: NOMENCLATURE

a, b dimensions of shell
R

x
, R

y
radii of curvatures

c percentage of loaded length/distance of concentrated load from edge
E Young's modulus
l Poisson's ratio
o mass density
G shear modulus
[K] sti!ness matrix
[K

g
] geometric sti!ness matrix

[M] mass matrix
MqN vector of generalized co-ordinates
w de#ection of mid-plane of shell
h
x
, h

y
rotations about axes

X, u frequency of forcing function and transverse vibration
a, b static and dynamic load factors
P
cr

critical buckling load
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